From (I)MD to Cloud!

Ahmad-Reza Sadeghi, Thomas Schneider, Christian Wachsmann Fraunhofer SIT Darmstadt and Technische Universität Darmstadt (CASED), Germany

> Mina Deng Philips Research Eindhoven, Netherlands

What is a Cool (I)MD ?

Today: Mobile Health Monitoring

Typically single providers and closed systems

Manually initiated by the patient or doctor

Tomorrow: Mobile Healthcare Network

Different providers and distributed systems

CASED

Example: Philips Home Healthcare

Security Lab

Objectives and Challenges

Security

- Data-centric protection
- Semi-trusted cloud service providers (e.g., honest but curious)
- Emergency access and availability
- Reliability, integrity, and confidentiality
- Accountability (incl. integrity of auditing files)
- Efficiency
- Self-management (resilience, availability, adaptability, scalability)

Privacy and Data Protection

- For patients and doctors
- Patient-centric protection and transparency (legislation awareness, auditability, policy compliance)

Ę

Attack Surfaces

Genuine medical software?

Medical data correct and authentic?

Problems to Tackle

Medical Device Security: Is this device genuine?

- Identification and authentication of medical devices
- Software integrity verification of medical devices

Medical Infrastructure Security: Who, where, when accesses data?

• Mobile Trusted Virtual Domains (TVDs)

Medical Data in the Cloud: Is secure computation possible?

• Privacy-preserving medical classification and diagnosis

CASED

Medical Device Security: Is this device genuine?

As per an estimate of the OECD and WHO, around 6-8% of the total medical devices market comprises of counterfeit goods.

The US FDA reported that intra-aortic pumps worth \$7m were recalled after malfunctioning components were found to be counterfeit.

The problem has also attracted the attention of the WHO: more than 2,000 kits containing stethoscopes and sphygmomanometers were seized during transport from China to Greece, and every part of the shipment had been counterfeited - packaging, instructions, devices and European standards marks.

Svstem

Security Lab

🜌 Fraunhofer

CASED

UNIVERSITAT

ļ

Physical Device Identification

Assumptions

- Adversary cannot predict PUF responses (unpredictability)
- Adversary cannot create physical copy of PUF (physical unclonability)

Drawbacks

- Number of authentications limited by size of database
- Inefficient system initialization
- Direct access to PUF may allow modeling attacks

Physically Uclonable Functions

- c Challenge
- e~~ Error (noise) of \varPi^*
- w Helper data

(to counter noise *e*, specific for each challenge *c*)

PUF-based Key Storage

[Šcoric et al. 05, Lim et al. 05]

Assumptions

- Adversary cannot create physical copy of PUF (unclonability)
- Adversary cannot access communication interface between PUF, fuzzy extractor and crypto algorithm

Software Integrity Verification

Assumptions

- Verifier knows exact hard- and software configuration of medical device
- Adversary cannot predict PUF responses (unpredictability)
- Adversary cannot create physical copy of PUF (physical unclonability)

Medical Infrastructure Security: Who, when, where access data?

www.tclouds-project.eu

Conceptual Architecture: Global View

System

🐚 Security Lab

🖉 Fraunhofer

TECHNISCHE

UNIVERSITAT

GCASED

Privacy Domains

Technology: Trusted Virtual Domains (TVDs)

TVD = Coalition of virtual machines

Properties

- Isolated execution environments (compartments)
- Trust relationships
- Transparent policy enforcement
- Secure communication
- Client platform security (based on modern hardware security functionality)

Logical TVD Architecture

physical machine

VM: Virtual Machines

Integration of TVD Main Components

TECHNISCHE

UNIVERSITAT

GCASED

🖉 Fraunhofer

ļ

Pro and Contra

Pro:

- Supports different operating systems (Linux, Symbian, Android)
- Very fast switching between different Compartments and TVDs

Contra:

Short development cycles

Towards Mobile TVDs

Trusted Mobile Desktop

Provides secure GUI and isolation of operating systems and stand-alone trusted applications (e.g., SMS application)

M. Selhorst, C. Stueble, F. Feldmann, U. Gnaida: Towards a Trusted Mobile Desktop. Trust 2010.

Android TVD: Color your Apps!

Concept: Container Isolation

Isolation with Containers

CASED

Medical Data Classification in the Cloud: Is secure computation possible?

www.speedproject.eu

Process Aggregated Medical Data

Example: Google Health

Patient reveals medical data to e-health provider

Privacy in Google Health

Problem: Googli-Leak Health learns Patient's Medical Data

➡ Insider Attacks !!!

Goal: Reveal no information at all!

Conflicting Security Objectives

Protect Data

Protect IP

⇒ No trivial solution!

Privacy-Preserving Medical Diagnostics

Security Lab

ECG Classification

U. R. Acharya, J. Suri, A. E. Spaan, S. M. Krishnan. Advances in Cardiac Signal Processing, Springer, 2007

System

📑 Security Lab

Fraunhofer

G CASED

UNIVERSITAT

Privacy-Preserving ECG Classification

April 1, 2011

TECHNISCH

UNIVERSITAT

CASED

Privacy-Preserving ECG Classification

- ECG Classification algorithm computed entirely under encryption using combination of efficient techniques for secure computation:
 - Computing with encrypted functions [Yao 1986]
 - Computing on encrypted data [Paillier 1999]

Classification Accuracy	83.3%
Runtime for Secure Classification	18.7s
(excluding signal processing)	
Communication	64 kByte

On two PCs (3GHz Intel Core Duo, 4GB RAM), Gigabit Ethernet

M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, T. Schneider: Secure evaluation of private linear branching programs with medical applications. ESORICS'09.

M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A. Paus, A.-R. Sadeghi, T. Schneider: Efficient privacy-preserving classification of ECG signals. IEEE WIFS'09.

M. Barni, P. Failla, R. Lazzeretti, A.-R. Sadeghi, T. Schneider: Privacy-preserving ECG classification with branching programs and neural networks. IEEE TIFS'11 (to appear).

Conclusion and Future Work

- (I)MDs are becoming reality
- Particularly important in aging societies
- (I)MDs are subject to counterfeiting
- However, (I)MDs are part of the story
 - Distributed infrastructure
 - Many devices and many parties
 - Cloud availability and secuity
 - Auditing systems

Core issues

- Privacy by design
- Legal aspects
- Emergency regulations
- Usable security

GCASED